Two exponential-type integrators for the “good” Boussinesq equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudospectral Method for the " Good " Boussinesq Equation

We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx + uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also reported.

متن کامل

Symmetric exponential integrators for the cubic Schrödinger equation

preprint numerics no. 3/2006 norwegian university of science and technology trondheim, norway

متن کامل

Solving the nonlinear Schrödinger equation using exponential integrators¶

Using the notion of integrating factors, Lawson developed a class of numerical methods for solving stiff systems of ordinary differential equations. However, the performance of these “Generalized Runge–Kutta processes” was demonstrably poorer when compared to the ETD schemes of Certaine and Nørsett, recently rediscovered by Cox and Matthews. The deficit is particularly pronounced when the schem...

متن کامل

The Boussinesq equation and Miura type transformations

Several Miura type transformations for the Boussinesq equation are found and the corresponding integrable systems constructed.

متن کامل

Implementation of exponential Rosenbrock-type integrators

In this paper, we present a variable step size implementation of exponential Rosenbrock-type methods of orders 2, 3 and 4. These integrators require the evaluation of exponential and related functions of the Jacobian matrix. To this aim, the Real Leja Points Method is used. It is shown that the properties of this method combine well with the particular requirements of Rosenbrock-type integrator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2019

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-019-01064-4